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Abstract

BACKGROUND: Neonatal intensive care practices have resulted in marked improvements in the
survival of premature infants; however, they remain at significant risk for adverse
neurodevelopmental outcomes. The impact of current nutritional practices on brain development
following early extra-uterine exposure in premature infants is not well known.

METHODS: We performed a systematic review to investigate nutritional effects on postnatal
brain development in healthy term and prematurely born infants utilizing advanced magnetic
resonance imaging tools.

RESULTS: Systematic screen yielded 595 studies for appraisal. Of these, 22 total studies were
selected for inclusion in the review, with findings summarized in a qualitative, descriptive fashion.

CONCLUSION: Fat and energy intake are associated with improved brain volume and
development in premature infants. While breast milk intake and long-chain polyunsaturated fatty
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acid supplementation has been proven beneficial in term infants, the impact in preterm infants is
less well understood.

INTRODUCTION

Premature infants are born at a time of rapid brain development marked by complex and
precisely programmed neurodevelopmental events, rendering the preterm brain vulnerable to
a host of insults and leading to a high incidence of lifelong neurocognitive, behavioral, and
motor impairments.12 Aberrant sensory experiences, toxic stress with systemic
inflammation, and early alterations in the infant microbiome have all been associated with
altered neurodevelopment.3—> These early exposures are exacerbated by the abrupt cessation
of placental nutritive and neuroendocrine support, culminating in an increased risk for
altered neurodevelopment. Current nutritional practices are unable to mimic the exponential
nutrient accretion that normally occurs during the third trimester of pregnancy, leading to a
high rate of postnatal growth failure in preterm infants.5 Given that poor postnatal growth is
associated with worse neurologic outcomes, it is imperative to identify key nutritional
interventions in the early postnatal period to support optimal neurodevelopment and prevent
long-term neurodevelopmental impairment.”:8

Magnetic resonance imaging (MRI) is the imaging modality of choice to evaluate neonatal
brain development. Recent studies demonstrate that leading-edge quantitative MRI
techniques such as volumetric segmentation, diffusion tensor imaging (DTI), resting-state
and functional MRI, and proton magnetic resonance spectroscopy (*H MRS) may serve as
important early biomarkers of functional neurodevelopmental outcomes in premature
infants.®~12 The aim of this systematic review is to appraise emerging research investigating
nutritional effects on neonatal brain development utilizing advanced MRI tools and highlight
nutritional interventions that have been recently identified as beneficial to neonatal brain
health. To accomplish this, we will provide an overview of existing literature in healthy term
infants followed by emerging data on the role of optimized nutritional management for
supporting early postnatal brain development in the premature infant. Finally, we will
explore the future role of advanced MRI tools in identifying neonatal nutritional practices
that best support the developing brain and optimize neurodevelopmental outcomes across the
lifespan.

METHODS

Prior to initiation, this systematic review protocol was registered with PROSPERO (https://
www.crd.york.ac.uk/PROSPERO), registration number CRD42019119577. Our aim was to
capture all studies evaluating the impact of neonatal nutritional interventions on brain
development as measured by MRI. The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) checklist was utilized for this review.13

Search strategy

Eligibility criteria and methods of analysis were determined a priori, and a medical librarian
with systematic review experience (S.K.) developed all searches. The search strategy was
restricted to English and included terms relating to or describing neonates or prematurity,
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nutritional interventions, and MRI techniques, including Medical Subject Headings (MeSH
terms) (Fig. 1). As we were reviewing relatively new interventions, there were no date or
study-type restrictions so as to ensure capture of every applicable study. We performed an
extensive search of the electronic databases PubMed, CINAHL, and Scopus (up to 15
January 2019). Search strategies and results were tracked using an Excel workbook designed
specifically for systematic reviews.1* The reference lists of studies selected for inclusion
were also manually reviewed to identify any potential additional studies not captured by the
electronic database search.

Article selection and exclusion criteria

Prior to screening the electronic database search results, a Cohen’s « test of inter-rater
reliability was performed, wherein two screeners evaluated a random subset of eligible
studies to ensure standardization of inclusion/exclusion criteria (S.K. and K.M.Q.). The full
set of titles and abstracts retrieved using the search strategy was then screened by one main
review author (K.M.Q.); if there was any question as to the eligibility of a study, it was
recommended for full-text review. Nutritional interventions performed in the neonatal period
(defined as the first 28 days life) in both term and preterm infants were eligible for inclusion.
Studies out of the scope of the review question were excluded, including animal studies,
those without a nutritional intervention or one performed outside of the neonatal period,
those in which no brain MRI was obtained, or those exclusively investigating a genetic or
metabolic disorder (Fig. 2). The full text of potentially eligible studies was then assessed for
inclusion in the review using the same inclusion/exclusion criteria.

Data extraction and risk of bias assessment

RESULTS

Data were extracted from all selected studies using a standardized form that contained
categories for the reporting of bibliographic information, study design characteristics,
sample size, specific nutritional interventions, MRI techniques, and study outcomes/
findings. Studies were appraised for risk of bias using either the Newcastle-Ottawa Tool for
nonrandomized studies or Cochrane Risk of Bias (RoB 2.0) tool for randomized controlled
trials.1>-17 Due to the expected heterogeneity of specific interventions and MRI outcomes
assessed across study designs, a descriptive synthesis of study findings was performed.

Electronic search of PubMed, CINAHL, and Scopus databases yielded 594 studies for
review. Cohen’s x screening of 66 studies for inter-rater reliability was performed by two
screeners, with a result of 0.8 (raw agreement 0.9). Following initial screen, 476 abstracts
were excluded. Full-text records of 118 studies were reviewed, 18 of which were deemed
eligible for systematic review. Four additional studies were discovered upon manual
inspection of reference lists of included studies, yielding 22 total studies for inclusion in the
systematic review, including 6 randomized controlled trials, 15 cohort studies, and 1 cross-
sectional study; 4 pairs of articles followed the same neonatal population or cohort at
different time-points or evaluating different outcomes. Characteristics and results of each
study are summarized in Table 1.

Pediatr Res. Author manuscript; available in PMC 2020 July 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ottolini et al.

Page 4

All six randomized controlled trials demonstrated a low risk of bias based on assessment
with the Cochrane Risk of Bias Tool. Newcastle-Ottawa scores for all 15 cohort studies were
consistent with good methodological quality (3—4 stars in selection domain, 1-2 stars in
comparability domain, and 2-3 stars in outcome/exposure domain). The one cross-sectional
study by Deoni et al.18 was evaluated using a modified Newcastle-Ottawa Score with a result
corresponding to moderate methodological quality (11/16 points).

DISCUSSION

Breast milk intake

Available MRI studies performed in full-term infants suggest that the neurodevelopmental
benefits of breast milk seen in this population may be mediated through improved structural
brain development.18-21 Deoni et al.18 utilized brain MRI to measure myelin water fraction
(VFn), a marker of white matter microstructural development, in a cross-sectional study
comparing formula and breastfed infants evaluated at toddler age. Breastfed infants
demonstrated increased VVFy, in several brain regions involved in vision, language, and
higher-order cognition, correlating with improved visual and receptive language scores.
When comparing brain volumes in school-aged children, Ou et al.1® found that breast milk
versus formula was associated with larger gray matter volume in the parietal and temporal
lobes. Breastfed children in this cohort also demonstrated increased activation of the frontal,
temporal, and occipital lobes on functional MRI during tasks of language and visual
perception, which correlated to better task performance compared to formula-fed infants.
Luby et al.22 found a similar relationship between breastfeeding and improved gray matter
volume on long-term follow-up in school-aged children that correlated with higher 1Q
scores.

Breastfeeding duration also plays an important role in the brain development of healthy term
infants. In the Deoni et al.18 study, infants who breastfed for an extended duration (>15
months) demonstrated increased VFy, in regions involved in vision, language, and motor
control by toddler age, with associated improved gross and fine motor, receptive and
expressive language, and visual reception scores. Beneficial effects of breastfeeding
persisted into adolescence in a study by Kafouri et al.,2% with longer duration of
breastfeeding associated with increased cortical thickness of the parietal lobe and greater
full-scale 1Q scores.

These benefits of breastfeeding on improved brain structure and function in full-term infants
cannot be directly extrapolated to the immature preterm brain, given the significantly greater
risk for neurodevelopmental impairment and oro-motor immaturity that often precludes
direct breastfeeding. Additionally, preterm infants have significantly greater nutrient and
energy requirements compared to their healthy term counterparts, warranting fortification of
breast milk feeds in attempts to increase macro- and micronutrient content.5 However, recent
MRI studies suggest that breast milk intake also has beneficial effects on the developing
preterm brain.23-27 Specifically, increased breast milk intake has been associated with
improved measures of white matter microstructure using DTI at term-equivalent age (TEA),
including greater fractional anisotropy (FA) in several important developmental regions such
as the corpus callosum, corona radiata, thalamic radiations, and superior longitudinal
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fasciculus.2527 The contributory effect of breast milk on cerebral volumes in preterm infants
has been less consistent. Vasu et al.25 found no significant association between breast milk
intake and total brain volume in preterm infants receiving fortified maternal or donor breast
milk. Early expressed maternal breast milk intake in the first 28 days of life was related to
increased hippocampal and deep nuclear gray matter volume at TEA in a study by Belfort et
al.28 By 7 years of age the association between breast milk and hippocampal volume in this
cohort was smaller and not sustained after adjusting for covariates, but breast milk-fed
infants still demonstrated improved neurodevelopmental outcomes in verbal and
performance 1Q, full-scale 1Q, math computation, and working memory. Another long-term
follow-up study by Isaacs et al.2* in adolescents born preterm demonstrated increased white
matter and total brain volume in breast milk-fed infants, corresponding to superior verbal
and full-scale 1Q scores.

MRI studies of both term and preterm infants have found interesting sex-specific differences
related to breast milk intake with preferential benefit seen in males. Ou et al.?! performed
MRI studies in breast milk-fed term infants at school age, and found greater FA suggestive
of improved microstructural development in the white matter tracts of the superior
longitudinal fasciculus, cingulum, corpus callosum, corona radiata, posterior limb of internal
capsule (PLIC), external capsule, and posterior crossing fibers in males only on DTI
analysis. Coviello et al.28 also noted a sex-specific positive effect of breast milk in preterm
infants, with only males demonstrating greater FA in the PLIC on DTI by TEA. On
subgroup analysis by gender, Isaacs et al.24 also found that the association between breast
milk intake and brain volumes in preterm infants remained significant for males only.

Taken together, existing studies of breastfed term infants demonstrated superior gray matter
volumes and improved white matter microstructural development corresponding to improved
neurodevelopmental outcomes through adolescence.18-22 However, none of these studies
were randomized controlled trials and infants were all exclusively breastfed, making it
nearly impossible to disentangle any potential confounding effect of the maternal—infant
bond on the observed benefits. Results from preterm studies have been less consistent, but
should also be interpreted with caution as these were all relatively small cohort studies with
the exception of Belfort et al.23 Additionally, the enrollment periods for these studies ranged
from 1982 to 2010 and did not necessarily reflect the most current nutritional practices,
including the now widespread use of pasteurized donor breast milk and breast milk
fortification.23-26 Despite these limitations, the existing literature suggests greater regional
and total brain volumes and improved white matter microstructural development in breast
milk-fed preterm infants, with associated improved developmental outcomes.23-26 Further
research is needed in contemporary cohorts to better delineate and solidify these findings.
The preferential benefits of breast milk seen in males provides an example of how advanced
MRI techniques highlight differences that might aid in future individualized optimization of
nutritional practices.

LCPUFA supplementation

Long-chain polyunsaturated fatty acids (LCPUFAS) such as docosahexanoic acid (DHA) and
arachadonic acid (AA) play a significant role in brain development and their presence in

Pediatr Res. Author manuscript; available in PMC 2020 July 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ottolini et al.

Page 6

breast milk has been postulated to mediate some of breast milk’s neurodevelopmental
benefits; however, their supplementation in the infant diet has yielded mixed results on MRI
studies.2%-32 A recent study by Lepping et al.3! of term infants randomized to receive
standard formula versus supplementation with AA and varying concentrations of DHA
(0.32%, 0.64%, or 0.96%) demonstrated improved MRI findings on long-term follow-up in
LCPUFA-supplemented groups. At 9 years of age, children who received supplementation
with 0.64% DHA demonstrated greater cortical connectivity on resting-state MRI between
prefrontal and parietal areas of the dorsal attention network.3! LCPUFA-supplemented
children also demonstrated increased activation in the anterior cingulate cortex, parietal
regions, and cerebellum while performing tasks of inhibition, with significantly greater
white matter volume in the anterior cingulate cortex using voxel-based morphometry. Proton
magnetic resonance spectroscopy also revealed significantly greater myo-inositol and A~
acetylaspartate levels in LCPUFA-supplemented groups, which are important markers of
neuronal cell integrity and signal transduction.3!

Tam et al.33 highlighted the relationship between early DHA levels and brain development in
preterm infants, finding a lower incidence and severity of intraventricular hemorrhage on
early postnatal MRI with increasing red blood cell DHA levels in a cohort of predominantly
breast milk-fed infants.33 Additionally, higher DHA levels were associated with decreased
mean diffusivity (MD) in the PLIC and optic radiations on early DTI studies, suggestive of
improved white matter development, as well as improved language and motor outcomes by
30-36 months of age.33 Despite these positive associations between DHA levels and brain
development, MRI studies of preterm infants receiving specific LCPUFA supplementation
have demonstrated less promising results. van Wezel-Meijler et al.32 supplemented formula
with a relatively low concentration of LCPUFA (DHA and AA) until 6 months of age, with
no significant effect on global myelination as measured by serial T1 and T2-weighted MRI
scans obtained at 3 and 12 months of age. With higher-dose DHA supplementation, Almaas
et al.29:30 found a borderline positive association with FA on DTI of the corpus callosum,
potentially signifying greater white matter organization, but no difference in brain volumes
on MRI or neurodevelopmental outcomes by 8 years of age.

These randomized controlled trials utilizing advanced MRI techniques demonstrated a
greater effect of LCPUFA supplementation on term versus preterm infants.2%-32 It should be
noted that enrollment for all these studies ranged from 1993 to 2005, potentially limiting the
generalizability to contemporary neonates. Additionally, the less striking effect of LCPUFA
supplementation seen in preterm infants could be related to study design, with a potential
dose and duration-dependent effect of LCPUFA supplementation for which the threshold
may have not been reached at the doses administered during these trials. Further research is
warranted to better evaluate these questions.29:30:32 The study by van Wezel-Meijer et al.32
also introduces the interesting concept of performing serial brain MRIs as a potential method
of evaluating nutritional interventions over time.

Macronutrient and energy intake

Studies of neonatal macronutrient intake have primarily focused on the preterm population,
and have reported a consistent positive relationship between cumulative fat and energy
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intake and preterm brain development by TEA.27:28:34-39 Schneider et al.2” confirmed the
importance early nutrition by demonstrating that greater lipid and energy intake in the first 2
weeks of life were associated with increased FA on DTI in several essential pathways
including the corona radiata, thalamic radiations, and superior longitudinal fasciculus.
Greater lipid and energy intake also correlated with larger basal nuclei and total brain
volumes, which were associated with higher psychomotor development index scores at 18
months corrected age. In a separate evaluation of preterm infants from this same cohort,
term-equivalent MRIs were evaluated using a semi-quantitative brain injury and maturation
scoring system for gray and white matter known as the Kidokoro score.4? Higher fat and
energy intake in the first 2 weeks of life were associated with improved Kidokoro scores,
especially in the gray matter.34 Coviello et al.28 showed that greater cumulative fat and
energy intake through the first month of life were associated with improved preterm brain
growth and microarchitecture, reflected by increased FA in the PLIC on DTI and increased
total and regional brain volumes in the cerebellum, basal ganglia, and thalamus at TEA. Tan
et al.39 similarly found larger total brain volume with increased energy intake in the first
month of life. These findings are in agreement with those of Strommen et al.,38 who showed
decreased MD in the superior longitudinal fasciculi on DTI in preterm infants receiving a
regimen of enhanced protein, fat, and energy supply, suggestive of improved white matter
organization by TEA in this region involved in behavior and language. In contrast to these
findings of cumulative nutrient intake, studies of mean nutrient intake during neonatal
intensive care unit stay did not find any association between mean lipid and energy intake
and cerebral volumes by TEA.26:35.37

Interestingly, although current nutritional practices emphasize the importance of early
protein administration to prevent negative nitrogen balance and mimic in utero nutrient
accretion, protein was less consistently associated with preterm brain development in
comparison to lipid and energy intake.27:28:34 Cumulative protein intake was associated with
improved gray matter but not total brain Kidokoro scores in Beauport et al.3# Schneider et
al.2” found a positive association between cumulative protein intake and head growth, as
well as total but not regional brain volumes. Conversely, the authors found no relationship
between total protein intake and white matter microstructure measured by DTI. However,
greater enteral protein intake predicted higher FA in the corona radiata, thalamic radiations,
and corticospinal tracts.2” Coviello et al.28 also noted a contribution from enteral but not
total cumulative protein intake on brain development, which was associated with increased
basal ganglia, thalami, and total brain volumes and greater FA in the PLIC on DTI. As with
average lipid and energy intake, mean protein intake did not correlate with cerebral volumes
at TEA.26’35’37

In the above studies of early nutritional intake in preterm infants, enteral nutrition had the
most significant contribution to brain development on MRI.2728 Confirming the long-term
importance of early enteral feeds, Isaacs et al.3¢ found that preterm infants fed a high-
nutrient diet demonstrated significantly greater caudate volumes and verbal 1Q scores in
adolescence. In contrast, Coviello et al.28 demonstrated that a longer duration of parenteral
nutrition in the first month of life correlated with lower volumes in the cerebellum, basal
ganglia and thalami, cortical gray matter, and total brain, as well as a negative association
with FA measured in the PLIC on DTI. These negative findings relating to parenteral
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nutrition should be interpreted with caution, due to potential confounding given that
parenteral nutrition is often required by the sickest neonates and may be a marker of other
systemic factors that are detrimental to brain development.

In several of these studies, improved weight gain was associated with greater total and
regional brain volumes by TEA.27-29 |n the trial by Tan et al.3% of hyperalimentation versus
standard feeding in preterm infants, anthropometric measures of weight, length, and head
circumference at 36 weeks postmenstrual age correlated significantly with cortical and total
brain volumes. However, larger head size did not always signify improved brain growth,
with Paviotti et al.37 reporting no correlation between head circumference and brain
volumes.

These MRI studies in preterm neonates emphasize the neurodevelopmental importance of
optimizing early nutrition, especially initiation and advancement of enteral feeds. Enteral
feeds demonstrated the greatest positive influence on brain development, with parenteral
nutrition and energy deficits demonstrating a negative impact. All were cohort studies with
relatively small sample sizes, but nevertheless consistently demonstrated an association
between greater cumulative fat and energy intake and improved white matter microstructure,
as well as total and regional brain volumes.27:28:34.36.38 These results also suggest that
cumulative macronutrient intake, rather than average, is the most important determinant for
improved brain development.26,35,37,39

Summary and future directions

Despite significant advances in early postnatal care of preterm infants, short- and long-term
neurodevelopmental impairments remain prevalent and wide-ranging, even in the absence of
overt brain injury.12 This systematic review highlights the importance of meeting basic
nutrient and energy needs to sustain the exponential brain growth of the ex utero preterm
infant. Studies of healthy term infants utilizing advanced MRI techniques provide evidence
for improved structural brain development, functional activation, and neurodevelopmental
outcomes through adolescence in breastfed infants and those with dietary supplementation
of LCPUFAs.18-22.31 preterm MRI studies demonstrate less robust relationships between
breast milk and LCPUFA supplementation and improved preterm brain development, but
suggest improved global and regional brain growth, white matter organization, and
functional neurodevelopmental outcomes with increasing breast milk intake.23-25.29
Additionally, preterm studies of macronutrient intake underscore the importance of early
enteral feeding and lipid intake, which has been less well studied compared to other
macronutrients.27,28,34,36,38,39

However, this review also highlights the profound gaps in measuring and assessing the
impact of early postnatal nutrition on neonatal brain neurodevelopment. It is difficult to
rectify the positive impact of breast milk and fat intake on preterm brain development with
the equivocal results of dietary supplementation with LCPUFAs, as LCPUFAs are thought to
be an important component of breast milk and mediator of brain development.23-25.27-30.34
Further study is required to determine whether this discrepancy is simply related to
suboptimal dosing and study design in previous studies, or rather suggests that other
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components in breast milk aside from LCPUFAs might play a more significant role in
preterm brain development.

A significant proportion of published studies reported on cross-sectional neuroimaging and
behavioral outcomes throughout the lifespan, reflecting outdated nutritional practices.
18,19,21-24,29-32,36,39 Alongside the increased awareness of the multitude of benefits from
human breast milk feeds for premature infants, there are an equal number of unanswered
questions. What is the role of donor milk on premature brain development? How does the
pasteurization process impact the potential immunologic benefits, and are they systemic or
brain specific? Future work will require longitudinal, real-time assessment of preterm brain
development as these nutritional practices are ever-evolving, with equal emphasis on macro-
and micro-nutrient intake, along with neuropeptide, neurohormone, and neurosteroid intake
to better mimic both the nutritional and neuroendocrine functions of the placenta for the ex
utero fetus.23,34,35

As might be expected with early studies of novel, evolving MRI techniques, the majority of
existing studies are small cohort studies.19:21:24-27.34=37 Moreover, those studies with more
extensive longitudinal follow-up represent outdated nutritional practices.23:24.32.36
Conversely, recent studies that have described more current nutritional practices have yet to
report long-term neurodevelopmental follow-up and correlate with MRI findings.
21,28,34,.37,38 The majority of studies also excluded infants with significant brain injury,
thereby excluding an especially vulnerable group that might benefit the most from
nutritional optimization and limiting the generalizability of current data in the highest-risk
group of premature infants.18-25,27-30,32,34,36,37 Indeed, Beauport et al.3* reported
improved early nutrition was associated with less dysmaturation and injury by TEA.

Despite the short-term follow-up of more recent studies utilizing advanced, quantitative MRI
techniques such as volumetric brain segmentation and DTI in preterm infants, they serve to
emphasize the necessity of optimizing early nutrition and enteral feeding in the first months
of life, highlighting that important changes can be measured by TEA in preterm infants
receiving differential nutritional interventions.27:28:34.38.39 Fyture large, randomized
controlled trials are needed to further elucidate the optimal timing, type, and duration of
targeted nutritional interventions to augment their effectiveness on neurodevelopment
leveraging advanced, multimodal MRI tools, and high-fidelity neuropsychological outcome
measures.
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(((((“Breast Feeding”"[Mesh]) OR “Infant Nutritional Physiological Phenomena”[Mesh]) OR “Milk,
Human”[Mesh]) OR “Lipids"[Mesh]) OR“Fatty Acids, Unsaturated”[Mesh]) OR “Arachidonic Acid"[Mesh]) OR
“Dietary Supplements”[Mesh] OR lipids OR macronutrients OR nutrients OR“long chain polyunsaturated
fatty acids” OR docosahexanoic acid OR “dietaryfats” OR “Dietary Fats’[Mesh] OR"Dietary Fats,
Unsatureted’[Mesh] OR “Nutritive Value”[Mesh] OR “Nutritional Support’[Mesh] OR “Nutrition
Therpy’[Mesh]) OR “Nutritional Status”[Mesh]) OR “Nutrition Assessent’[Mesh]) OR “Nutritive
Value’[Mesh]) OR diet))) AND ((“Magentic Resonance Imaging’[Mesh]) OR “Diffusion Magentic Resonance
Imaging”[Mesh]) OR “Image Processing Computer-Assisted’[Mesh]) OR (MRI[Title/Abstract] OR magnetic
resonace imaging[Title/Abstract] OR resting-state MRI OR resting state magnetic resonance imaging
[Title/Abstract] OR “diffusion tensor imaging” OR “resting state magnetic resonance imaging”

[Title/Abstract] OR “volume analysis” AND magnetic resonance imaging))) AND ((Premature Birth [Mesh] OR
Infant, Extremely Premature [MeSH], “preterm birth” [Title/Abstract] “periviable birth” [Title/Abstract],

“premature babies” [Title/Abstract], preemie*[Title/Abstract] OR “term equivalent” OR premature OR

neonat* OR infant OR pretern)))))) AND brain

Fig. 1.
Search strategy utilized for electronic database search
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Total number of items identified from
database searches
k=731

137 Internal and external duplicate
citations excluded

|

594 Titles and abstracts screened

l

476 Titles and abstracts excluded
52 Animal studies
61 Nutritional interventions outside
neonatal period
299 No nutritional intervention
47 No brain MRI or does not evaluate
nutritional effect on brain development
16 Genetic/metabolic syndrome
1 Not original research

|

Page 13

122 Full-text records reviewed

Additional items found outside database
searches to be screened for inclusion
k=4

100 Full-text articles excluded
10 Non-english
1 Animal studies
25 Nutritional interventions outside
neonatal period
26 No nutritional intervention
13 No brain MRI or does not evaluate
nutritional effect on brain development
11 Genetic/metabolic syndrome
14 Not original research

|

22 Publications included

Fig. 2.

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram
of results of electronic database search, title, and abstract screening, as well as full-text

review. Ineligible studies excluded
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